A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model

نویسندگان

  • Leopoldo Eduardo Cárdenas-Barrón
  • Gerardo Treviño-Garza
  • Hui-Ming Wee
چکیده

This research presents an alternative heuristic algorithm to solve the vendor management inventory system with multi-product and multi-constraint based on EOQ with backorders considering two classical backorders costs: linear and fixed. For this type of inventory system, the optimization problem is a nonlinear integer programming (NLIP). Several numerical examples are given to demonstrate that the proposed heuristic algorithm is better than the previous genetic algorithm published based on three aspects: the total cost, the number of evaluations of the total cost function and computational time. Furthermore, the proposed algorithm is simpler and can be implemented by any people. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parameter-tuned genetic algorithm for vendor managed inventory model for a case single-vendor single-retailer with multi-product and multi-constraint

This paper develops a single-vendor single-retailer supply chain for multi-product. The proposed model is based on Vendor Managed Inventory (VMI) approach and vendor uses the retailer's data for better decision making. Number of orders and available capital are the constraints of the model. In this system, shortages are backordered; therefore, the vendor’s warehouse capacity is another limitati...

متن کامل

Optimizing a bi-objective vendor-managed inventory of multi-product EPQ model for a green supply chain with stochastic constraints

In this paper, a bi-objective multi-product single-vendor single-buyer supply chain problem is studied under green vendor-managed inventory (VMI) policy based on the economic production quantity (EPQ) model. To bring the model closer to real-world supply chain, four constraints of model including backordering cost, number of orders, production budget and warehouse space are considered stochasti...

متن کامل

Vendor Managed Inventory of a Supply Chain under Stochastic Demands

In this research, an integrated inventory problem is formulated for a single-vendor multiple-retailer supply chain that works according to the vendor managed inventory policy. The model is derived based on the economic order quantity in which shortages with penalty costs at the retailers` level is permitted. As predicting customer demand is the most important problem in inventory systems and th...

متن کامل

A discrete particle swarm optimization algorithm with local search for a production-based two-echelon single-vendor multiple-buyer supply chain

This paper formulates a two-echelon single-producer multi-buyer supply chain model, while a single product is produced and transported to the buyers by the producer. The producer and the buyers apply vendor-managed inventory mode of operation. It is assumed that the producer applies economic production quantity policy, which implies a constant production rate at the producer. The operational pa...

متن کامل

A Multi-Periodic Multi-Product Inventory Control Problem with Discount: GA Optimization Algorithm

In this article, a finite horizon, multi product and multi period economic order quantity like seasonal items is considered where demand rate is deterministic and known but variable in each period. The order quantities of items come in batch sizes and the end of the period order quantity and, consequently, demand of customers are zero. In addition, storage space is constrained and the problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012